Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Oral Health ; 24(1): 413, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575940

RESUMO

BACKGROUND: Tissue engineering has attracted recent attention as a promising bone repair and reconstruction approach. Dental pulp stem cells (DPSCs) are pluripotent and can differentiate into bone cells with the correct environment and substrate. Therefore, suitable scaffold materials are essential for fabricating functional three-dimensional (3D) tissue and tissue regeneration. Composite scaffolds consisting of biodegradable polymers are very promising constructs. This study aims to verify the biological function of human DPSCs seeded onto composite scaffolds based on graphene oxide (GO) and poly-L-lactic acid (PLLA). METHODS: The surface morphology was observed under scanning electron microscopy (SEM). Chemical composition was evaluated with Fourier transform infrared (FTIR) spectroscopy. The biocompatibility of GO/PLLA scaffolds was assessed using phalloidin staining of cytoskeletal actin filaments, live/dead staining, and a CCK-8 assay. The effect of GO/PLLA scaffolds on cell osteogenic differentiation was detected through ALP staining, ALP activity assays, and alizarin red S staining, complemented by quantitative real-time PCR (qRT-PCR) analysis. RESULTS: Our data showed that GO and PLLA are successfully integrated and the GO/PLLA scaffolds exhibit favorable bioactivity and biocompatibility towards DPSCs. Additionally, it was observed that the 0.15% GO/PLLA scaffold group promoted DPSC proliferation and osteogenic differentiation by forming more calcium nodules, showing a higher intensity of ALP staining and ALP activity, and enhancing the expression levels of differentiation marker genes RUNX2 and COL1. CONCLUSIONS: These results demonstrate that the GO/PLLA scaffold is a feasible composite material suitable for cell culture and holds promising applications for oral bone tissue engineering.


Assuntos
Grafite , Osteogênese , Poliésteres , Tecidos Suporte , Humanos , Tecidos Suporte/química , Polpa Dentária , Diferenciação Celular , Células-Tronco , Proliferação de Células
2.
Oral Dis ; 29(2): 458-468, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34061424

RESUMO

OBJECTIVE: This study was designed to identify the role of circRNAs in tongue squamous cell carcinoma (TSCC) and discover novel circRNAs as potential diagnostic or therapeutic targets for TSCC. RESULTS: The circRNA expression profiles in TSCC were evaluated by high-throughput sequencing in 6 TSCC patients. Our data showed that 69 circRNAs were downregulated and 208 were upregulated significantly (fold change ≥2.0; p < 0.05). GO and KEGG analysis demonstrated that the parental genes of differentially expressed circRNAs were potentially implicated in TSCC pathogenesis. After bioinformatics analysis, 4 circRNAs (hsa_circ_0005035, hsa_circ_0002360, hsa_circ_0066251, and hsa_circ_0003161) were selected and successfully validated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) in 40 patients and 3 TSCC cell lines. The establishment and analysis of the circRNA-miRNA-mRNA network revealed the potential function and mechanism of these candidate circRNAs. CONCLUSION: Our study provided a comprehensive circRNAs expression profile of TSCC by RNA-seq and discovered 4 novel circRNAs with potential great diagnostic and therapeutic value. These findings provide new insights into the development of potential biomarkers and targets for TSCC treatment.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Neoplasias da Língua , Humanos , RNA Circular/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Neoplasias da Língua/genética , MicroRNAs/genética , Biologia Computacional , Língua
3.
Cell Biochem Funct ; 38(5): 676-682, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32236974

RESUMO

Invasion of dentinal tubules and pulp tissue by pathogenic bacteria may cause infection leading to pulpitis. Sirtuin 6 (SIRT6) is a NAD-dependent protein deacetylase encoded by the SIRT6 gene. The effect of SIRT6 on lipopolysaccharide (LPS)-induced pulpitis and its mechanism of action were discussed in this study. Dental pulp cells (DPCs) were extracted from human teeth and injected with LPS to induce inflammation. The cells injected with LPS showed substantially decreased expression of SIRT6. The overexpression of SIRT6, induced by plasmid-transfection of DPCs with SIRT6 overexpressing vector, led to a marked decrease in proinflammatory cytokines (IL-6, IL-1ß, and TNF-α) and deactivation of NF kappa B pathway. Additionally, dentin matrix protein-1 (DMP1), a promoter of inflammation in dental pulp tissues, was downregulated. Further investigation revealed that SIRT6 promotes ubiquitination of the transient receptor potential vanilloid 1 (TRPV1) channel, leading to its degradation and deactivation. The role of TRPV1 in the anti-inflammatory effects of SIRT6 was determined through incubation of SIRT6-expressing dental pulp stem cells (DPSCs) with capsaicin. This incubation counteracted the effect of SIRT6 on cytokines and DMP1. The injection of lentivirus-SIRT6 attenuated LPS-induced pulpitis in vivo by suppressing TRPV1 activity. Thus, SIRT6 inhibits the TRPV1 channel during LPS-induced inflammation of dental pulp. SIGNIFICANCE OF THE STUDY: This study discussed the effect of sirtuin 6 (SIRT6) on lipopolysaccharide (LPS)-induced pulpitis as well as its mechanism of action and found that SIRT6 may be a negative regulator of pulpitis. Additionally, low expression of SIRT6 and high expression of transient receptor potential vanilloid 1 (TRPV1) in LPS-treated human dental pulp cells are closely associated with proinflammatory cytokines, dentin matrix protein 1 expression, and activation of the NF-κB pathway, which indicated that TRPV1 may be a biomarker for pulpitis and the SIRT6-TRPV1-CGRP axis maybe a clinical target due to their role regulating inflammation and neuropathic pain.


Assuntos
Sirtuínas/metabolismo , Canais de Cátion TRPV/metabolismo , Adolescente , Adulto , Animais , Criança , Citocinas/biossíntese , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/metabolismo , Humanos , Lipopolissacarídeos , Masculino , Pulpite/induzido quimicamente , Pulpite/metabolismo , Pulpite/patologia , Ratos , Ratos Sprague-Dawley , Sirtuínas/genética , Adulto Jovem
4.
Biomed Res Int ; 2019: 4759060, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396530

RESUMO

INTRODUCTION: Pulp regeneration, as a treatment for pulp necrosis, has significant advantages over root canal therapy for the preservation of living pulp. To date, research on pulp regeneration has mainly focused on the transplantation of pulp stem cells into the root canal, but there is still a lack of research on the migration of pulp cells into the root canal via cell homing. Stem cells from the apical tooth papilla (SCAP) are recognized as multidirectional stem cells, but these cells are difficult to obtain. MicroRNAs are small noncoding RNAs that play crucial roles in regulating normal and pathologic functions. We hypothesized that some types of microRNAs might improve the migration and proliferation function of dental pulp stem cells (DPSCs), which are easily obtained in clinical practice, and as a result, DPSCs might replace SCAP and provide valuable information for regenerative endodontics. METHODS: Magnetic activated cell sorting of DPSCs and SCAP was performed. Next-generation sequencing was performed to examine DPSCs and SCAP miRNAs expression and to identify the most significant differentially expressed miRNA. CCK-8 and transwell assays were used to determine the impact of this miRNA on DPSCs proliferation and migration. RESULTS: The most significant differentially expressed miRNA between DPSCs and SCAP was miR-224-5p. Downregulating miR-224-5p promoted DPSCs proliferation and migration; the opposite results were observed when miR-224-5p was upregulated. CONCLUSION: MiR-224-5p promotes proliferation and migration in DPSCs, a finding that is of great significance for further exploring the role of dental pulp stem cells in regenerative endodontics.


Assuntos
Movimento Celular , Proliferação de Células , Polpa Dentária/metabolismo , Regulação para Baixo , MicroRNAs/biossíntese , Células-Tronco/metabolismo , Adolescente , Adulto , Polpa Dentária/citologia , Feminino , Humanos , Masculino , Células-Tronco/citologia
5.
Eur J Oral Sci ; 127(4): 294-303, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31216106

RESUMO

Dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAPs) are oral mesenchymal stem cells capable of self-renewal and have a potential for multilineage differentiation. Increasing evidence shows that microRNAs (miRNAs) play important roles in stem cell biology. Here, we focused on exploring miR-146a-5p and its relationship to the undifferentiated status of STRO-1+ SCAPs and STRO-1+ DPSCs, as well as its role during STRO-1+ DPSC differentiation and proliferation. Our data indicated that baseline miR-146a-5p expression is significantly lower in STRO-1+ SCAPs than in STRO-1+ DPSCs and increased in the latter during osteogenic induction. Moreover, we identified miR-146a-5p as a key miRNA that promotes osteo/odontogenic differentiation of STRO-1+ DPSCs and attenuates cell proliferation. Additionally, it was observed that STRO-1+ DPSC mineralization results in the downregulation of notch receptor 1 (NOTCH1) and hes family bHLH transcription factor 1 (HES1). Interference with neurogenic locus notch homolog protein 1 (Notch 1) signaling was verified to enhance differentiation and suppress STRO-1+ DPSC proliferation. It was further observed that miR-146a-5p directly targets the 3'-untranslated region (3'-UTR) of NOTCH1 and inhibits expression of both NOTCH1 and HES1mRNAs and Notch 1 and transcription factor HES-1 (HES-1) proteins in STRO-1+ DPSCs. We conclude that miR-146a-5p exerts its regulatory effect on STRO-1+ DPSC differentiation and proliferation partially by suppressing Notch signaling.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , MicroRNAs/genética , Receptor Notch1/genética , Células-Tronco/citologia , Proliferação de Células , Células Cultivadas , Humanos
6.
PeerJ ; 6: e5307, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30128179

RESUMO

Oral squamous cell carcinoma (OSCC) is a major malignant cancer of the head and neck. Long non-coding RNAs (lncRNAs) have emerged as critical regulators during the development and progression of cancers. This study aimed to identify a lncRNA-related signature with prognostic value for evaluating survival outcomes and to explore the underlying molecular mechanisms of OSCC. Associations between overall survival (OS), disease-free survival (DFS) and candidate lncRNAs were evaluated by Kaplan-Meier survival analysis and univariate and multivariate Cox proportional hazards regression analyses. The robustness of the prognostic significance was shown via the Gene Expression Omnibus (GEO) database. A total of 2,493 lncRNAs were differentially expressed between OSCC and control samples (fold change >2, p < 0.05). We used Kaplan-Meier survival analysis to identify 21 lncRNAs for which the expression levels were associated with OS and DFS of OSCC patients (p < 0.05) and found that down-expression of lncRNA AC012456.4 especially contributed to poor DFS (p = 0.00828) and OS (p = 0.00987). Furthermore, decreased expression of AC012456.4 was identified as an independent prognostic risk factor through multivariate Cox proportional hazards regression analyses (DFS: p = 0.004, hazard ratio (HR) = 0.600, 95% confidence interval(CI) [0.423-0.851]; OS: p = 0.002, HR = 0.672, 95% CI [0.523-0.863). Gene Set Enrichment Analysis (GSEA) indicated that lncRNA AC012456.4 were significantly enriched in critical biological functions and pathways and was correlated with tumorigenesis, such as regulation of cell activation, and the JAK-STAT and MAPK signal pathway. Overall, these findings were the first to evidence that AC012456.4 may be an important novel molecular target with great clinical value as a diagnostic, therapeutic and prognostic biomarker for OSCC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...